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A two-dimensional (2D) conformal transformation, (that preserves shape and hence 

angles), is a useful tool for practicing cadastral surveyors.  It can be used as an aid to 

re-establishment where occupation boundary corners of allotments, surveyed in the 

field on an arbitrary survey coordinate system, can be transformed to the cadastral 

title coordinate system and occupation/title comparisons made.  The transformation 

process consists of two parts.  The first part is the determination of the 

transformation parameters; scale s, rotation θ  and translations, .  This 

requires a minimum of two control points having coordinates in both the title and 

survey coordinate system.  If there are three or more control points, then the 

transformation parameters are determined by a least squares process and a weighting 

scheme can be employed.  The second part is to use the transformation parameters 

(determined from the control points) to transform the other surveyed points onto the 

title system.  This paper sets out the necessary theory of 2D conformal 

transformations and the determination of transformation parameters using least 

squares.  In addition, weighting schemes are discussed as well as transformations that 

preserve scale (i.e., a scale ). 

 and xt
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INTRODUCTION 

Conformal coordinate transformations, are widely used in the surveying profession.  

For instance, in geodesy, 3D conformal transformations can be used to convert 

coordinates related to the Australian Geodetic Datum (AGD66, AGD84) to the 
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Geocentric Datum of Australia (GDA94), in engineering surveying they form part of 

monitoring and control systems used in large projects such as the construction of 

elevated freeways and tunnels (Deakin 1998), and in photogrammetry they are used 

in the orientation (interior and exterior) of aerial digital images.  In 2D form, 

transformations are used in cadastral survey re-establishments (Bebb 1981, Sprott 

1983 and Bird 1984), matching digitized cadastral maps (Shmutter and Doytsher 

1991) and "sewing together" the edges of strips of digital images (Bellman, Deakin 

and Rollings 1992). 
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In general, the effect of a 2D transformation on a polygon (a plane multi-sided figure) 

will vary from a simple change of location and orientation (with no change in shape 

or size) to a uniform change in scale (no change in shape) and finally to changes of 

shape and size of different degrees of nonlinearity (Mikhail 1976).  The most common 

transformations in surveying applications, and the only type dealt with in this paper, 

are conformal, i.e., transformations that preserve angles and thus the shape of 

objects.  Theory and applications of other coordinate transformations, such as affine, 

polynomial, projective etc. can be found in Mikhail (1976) and Moffitt and Mikhail 

(1980).  In the theory that follows, transformations are expressed in the form of 

equations linking coordinates in one system with coordinates in another system and 

these equations contain rotation angles (usually denoted by θ ), as well as scale s and 

translations  (or ) where the subscripts relate to the coordinate 

system axes labels, x,y; E,N; u,v; etc.  The idea of rotation is important and as we 

will see there are several different types of rotations, i.e., an object can have an 

 and x yt  and Et

actual rotation where it is rotated about a point; or an apparent rotation where its 

coordinates change because the coordinate axes are rotated; and these rotations can 

be clockwise or anticlockwise.  In this paper we will only be considering apparent 

rotations caused by anticlockwise rotation of coordinate axes and to clarify these 

issues some rules and diagrams are helpful. 

 

In general we consider points in space as being connected to the origin O of a 3D 

right-handed rectangular coordinate system x,y,z.  Such a system can be visualised as 

the corner of a room where the intersection of two walls and the floor provide three 

reference lines Ox, Oy and Oz, known as the x-, y- and z-axes that are (usually) at 



right angles to one another.  The x-z and y-z planes are the walls and the x-y plane is 

the floor. 

The three mutually perpendicular axes x, y 

and z are related by the right-hand rule as 

follows: 

z

y

x

 

If the thumb, the forefinger and the second 

finger of the right hand are placed 

mutually at right angles then the thumb 

points in the z-direction, the forefinger 

points in the x-direction and the second 

finger points in the y-direction. 

 
z

x y
θ

The axes x, y and z (in the cyclic order 

xyz) are a right-handed system (or dextral 

system) since a rotation from x towards y 

advances a right-handed screw in the 

direction of z.  Similarly, a rotation from y 

towards z advances a right-handed screw 

in the direction of x and so on.  The 

diagram on the left shows the right-hand-

screw rule for the positive directions of 

rotations and axes of a right-handed 

rectangular coordinate system.   

 

These rotations are considered positive anticlockwise when 

looking along the axis towards the origin; the positive sense 

of rotation being determined by the right-hand-grip rule 

where an imaginary right hand grips the axis with the thumb 

pointing in the positive direction of the axis and the natural 

curl of the fingers indicating the positive direction of 

rotation.   
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The right-handed coordinate system and positive anticlockwise rotations (given by 

the right-hand-grip rule) are consistent with conventions used in mathematics and 

physics and in mathematics, angles are measured positive anticlockwise from the x-

axis; a convention we also use in these notes.  As surveyors, we deal almost 

exclusively with angular quantities (bearing, azimuths, directions, etc) considered as 

positive clockwise and usually measured from north (or the y-axis in the x-y system 

or the v-axis in the u-v system) and this surveying convention of positive clockwise 

rotation from north could be described by a left-hand-grip rule but we do not usually 

do this. 

CONFORMAL TRANSFORMATIONS IN TWO-DIMENSIONAL (2D) SPACE 

In 2D conformal transformations all points lie in a plane and such points are 

considered to have only x,y (or u,v) coordinates, i.e., they lie in the x-y (or u-v) plane 

with a z-value = 0 (or w-value = 0).  In these notes it is assumed that 2D conformal 

transformations are transformations from one rectangular coordinate system (u,v) 

which we could call the survey system to another rectangular system (x,y) that we 

could call the title system.  Both of these coordinate systems could be thought of as 

arbitrary and it is immaterial where the origins of both systems lie.  In addition, 

unless stated otherwise, a rotation is an angle considered to be positive in an 

anticlockwise direction as determined by the right-hand-grip rule and rotations of 

polygons (or objects) are apparent, since we are considering rotations of coordinate 

axes rather than actual rotations of polygons about a centre – more about this later.  

Also, transformation equations are conveniently expressed using matrix notation and 

a rotation matrix R (whose elements are functions of the rotation angle θ ) is a 

component of any conformal transformation equation.  Rotation matrices are 

orthogonal, which is a very useful property, and there is an explanation of this 

property in the following sections. 

 

The general conformal transformation formula are developed in a simple way.  First, 

by considering transformations involving rotation only; then, involving both scale and 

rotation.  And finally, the general case, involving scale, rotation and translations.  

We then show that this general conformal transformation (combining scale, rotation, 

translation) is the same as that obtained by using the mathematical principles of 

conformal mapping developed by C. F. Gauss. 
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Conformal Transformation involving Rotation only 

u,v coordinates (survey system) are transformed to x,y (title system) coordinates by 

considering a rotation of the u,v coordinate axes through a positive anticlockwise 

angle θ .  The transformation equations can be expressed in the following way 

  (1) 
cos sin

sin cos

x u v

y u v

θ θ

θ θ

= +

= − +

or in matrix notation 

 

 
cos sin

sin cos

x u
y

θ θ

θ θ v
⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (2) 

 

As an example consider the polygon ABCD whose u,v coordinates are rotated by a 

positive anticlockwise angle .  Figure 1 shows the initial location of the 

polygon in the u,v  survey system and Figure 2 shows its transformed (rotated) 

location in the x,y title system. 

30θ = D

 
Point

100.000 250.000

200.000 423.205

286.602 373.205

157.735 150.000

u v

A

B

C

D

 

u

v

A

B

C

D

x

y

 

 

 

 Figure 1  Polygon ABCD with u,v coordinates in metres 
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Point

211.603 166.506

384.808 266.506

434.807 179.904

211.603 51.036

x y
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D

x

y
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B

C

D

 

 

 

 

 

 

Figure 2  Rotated polygon ABCD with x,y coordinates in metres 

 

Comparing Figures 1 and 2 it appears that the size and shape of the polygon ABCD 

has not changed but its orientation with respect to the coordinate axes has.  This can 

be verified by considering the dimensions (bearings and distances) of the polygon 

ABCD derived from the two coordinate sets. 
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Line Bearing Distance

60 00 200.000

150 00 100.000
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0 00 115.470
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 Polygon dimensions in the u,v system Polygon dimensions in the x,y system 

 

This example demonstrates that a rotation of the coordinate axes causes an apparent 

rotation, in an opposite direction, of any polygon defined within the coordinate 

system.  The size and shape of the polygon does not change. 
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Equation (1) and its matrix equivalent (2) can be obtained by considering Figure 3. 

 

 

u

v

y

xv

u •
P

θ

v si
n θ

v cos θ

u sin θ

u c
os θ

 
 

Figure 3  x,y coordinates of P as functions of u,v coordinates and rotation θ  

 

Rotation matrices 

Equation (2) can be expressed as 

 
cos sin

sin cos

x u
y v

θ θ

θ θ

u
v

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
=

⎢ ⎥⎣ ⎦
R  (3) 

where  is known as a rotation matrix.  Rotation matrices are 

orthogonal, i.e., the sum of squares of the elements of any row or column is equal to 

unity and an orthogonal matrix has the unique property that its inverse is equal to 

its transpose, i.e., .  This useful property allows us to write the 

transformation from x,y coordinates to u,v coordinates as follows. 

cos sin

sin cos

θ θ

θ θ

⎡ ⎤
⎢= ⎢−⎢ ⎥⎣ ⎦

R ⎥
⎥

1 T− =R R

 1 1

T

x u
y v

x u
y v

x u
y v

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥

⎦

⎣ ⎦ ⎣ ⎦

R

R R R

R I

 

and rearranging gives 

 
cos sin

sin cos
T

u x
v y

θ θ

θ θ

x
y

⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
R  (4) 
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We could write (4) as 
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x
y 

cos sin

sin cos

u x
v y

θ θ

θ θ
∗

⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
R  

which in words means: the x,y coordinates are transformed (rotated) to u,v 

coordinates.  Equation (3) on the other hand means: the u,v coordinates are 

transformed (rotated) to x,y coordinates and it is interesting to note that R and  

are in fact the same rotation matrix except in the former, θ  is positive anticlockwise 

and in the latter θ  is positive clockwise.  Note that  and 

. 

∗R

sin( ) sinθ θ− =−
cos( ) cosθ θ− =

Orthogonal Matrices 

Orthogonal matrices are extremely useful since their inverse is equal to their 

transpose.  Rotation matrices R are orthogonal, hence .  A proof of this can 

be found in Allan (1997) and is repeated here. 

1 T− =R R

Consider the effect of a rotation on the coordinates x of a point P, expressed as 

  =X Rx

x

X is the transformed (or rotated) coordinates and R is the rotation matrix.  

Multiplying both sides of the equation by the inverse of R gives 

  1 1− −=R X R Rx

but from matrix algebra  and  so 1− =R R I =Ix x

  1− =R X x

or  1−=x R X

The length (actually squared length) of the line from the origin to the original 

position of point P is given by  and the length from the origin to the new 

(rotated) position is given by .  This length does not change due to rotation, i.e., 

it is invariant under rotation.  Hence 

Tx x
TX X

  T T=x x X X

but  =X R

so 
( )TT

T T

=

=

x x Rx Rx

x R Rx
 



For this result to be possible 

  T =R R I

but  1− =R R I

Therefore 

  1T −=R R

Thus the inverse of a rotation matrix is equal to its transpose. 

Rotation of Axes versus Rotation of Object 

In these notes it is assumed that a rotation angle is a positive anticlockwise angle as 

determined by the right-hand-grip rule and that "apparent" rotations of objects 

(polygons) are caused by a rotation of the coordinate axes.  This is not the only way 

that an object can be rotated.   

 

x

y

·

·

θ

φ P

P'

o

d

d

Consider Figure 4 where P with coordinates x,y moves to 

P' with coordinates x',y' by a positive anticlockwise 

rotation φ .  The coordinates of P' are 

  (5) 
( ) (

( ) (

cos cos cos sin sin

sin sin cos cos sin

x d d

y d d

θ φ θ φ θ φ

θ φ θ φ θ φ

′= + = −

′= + = +

)

)

θ=

 Figure 4 

 

The coordinates of P are  and y d  which can be substituted into 

(5) to give 

cosx d θ= sin

  or in matrix form 
cos sin

cos sin

x x y

y y x

φ φ

φ φ

′= −

′= +

cos sin

sin cos

x x
yy

φ φ

φ φ

x
y

⎡ ⎤′ ⎡ ⎤− ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦
R  (6) 

Where R  is a rotation matrix and the rotation angle φ  is a "right-handed" rotation.  

Inspection of equations (3) and (6) shows that R  is not the same form as R, in fact 

it is identical in form to . TR
The rotation matrix R causes an apparent rotation of the object by rotation of the 

coordinate axes whilst the rotation matrix R  rotates the object itself.  Both R and 

R  are "right-hand" rotation matrices (one is the transpose of the other) and there is 

often confusion amongst users of transformation software in defining the type of 
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rotation and the positive direction of rotation.  You must be very careful in defining 

rotation, i.e., you must state what is being rotated, either axes or object and what is 

the positive direction of rotation.  In these notes it is always assumed that the 

coordinate axes are being rotated and the rotations are always positive anticlockwise 

as defined by the right-hand-grip rule. 

Conformal Transformation involving Rotation θ  and a Scale change s 

u,v coordinates (survey system) are transformed to x,y coordinates (title system) by 

considering a rotation of the u,v coordinate axes through a positive anticlockwise 

angle  and a scaling of the u,v coordinates by a factor s.  The transformation 

equations can be expressed in the following way 

θ

 
( ) ( )

( ) (

cos sin

sin cos

x s u s

y s u s

θ θ

θ θ

= +

=− + )

v

v

v

 (7) 

or in matrix notation 

 
cos sin

sin cos

x u
sy

θ θ

θ θ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 (8) 

Often, the coefficients of u and v in (7) are written as  and  

giving 

cosa s θ= sinb s θ=

 
x a b
y b a

u
v

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥ − ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 (9) 

and the scale factor s and the rotation angle θ  are given by 

 

2 2

1tan

s a b

b
a

θ −

= +

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠

 (10) 
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As an example consider the polygon ABCD whose u,v coordinates (survey system) 

are rotated by a positive anticlockwise angle  and scaled by a factor .  

Figure 1 shows the initial location of the polygon in the u,v system and Figure 5 

shows its transformed (rotated and scaled) location in the x,y system (title system). 

30θ = D 0.6s =

 

 Point

126.962 99.904

230.885 159.904

260.884 107.942

126.962 30.622

x y

A

B

C

D

  

x

y

A
B

C

D

 

 

 

 

 

Figure 5  Rotated and scaled polygon ABCD with x,y coordinates in metres 

 

Comparing Figures 1 and 5 it appears that the shape of the polygon ABCD has not 

changed but its size and orientation with respect to the coordinate axes has.  This 

can be verified by considering the dimensions (bearings and distances) and area of the 

polygon ABCD derived from the two coordinate sets. 

 

 

2
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Line Bearing Distance
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150 00 60.000
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BC

CD

DA

′

′

′

′

D

D

D

D

 

 Polygon dimensions in the u,v system Polygon dimensions in the x,y system 

 

Inspection of the two sets of dimensions reveals that bearings have been rotated by 

an angle  and distances scaled by a factor .  30θ = D 0.6s = Note that the shape of 

the polygon is unchanged but the area of the transformed figure has been reduced by 

a factor of . 2s
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Conformal Transformation with Rotation , Scale change s and Translations  θ ,x yt t

u,v coordinates (survey system) are first transformed to  coordinates by 

considering a rotation of the u,v coordinate axes through a positive anticlockwise 

angle θ  and a scaling of the u,v coordinates by a factor s.  The  coordinates are 

then transformed into x,y coordinates (title system) by the addition of translations  

and t . 

,x y′ ′

,x y′ ′

xt

y

The transformation equations can be expressed in the following way 

 
( ) ( )

( ) ( )

cos sin

sin cos
x

y

x s u s v

y s u s v

θ θ

θ θ

= +

=− + +

t

t

+

v

 (11) 

or in matrix notation 

 
cos sin

sin cos
x

y

x u t
sy t

θ θ

θ θ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ + ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
 (12) 

or 
x

y

x u t
sy v t

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
R  

 

Similarly to before writing  and  gives cosa s θ= sinb s θ=

 
x

y

x a b u t
y v tb a

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ + ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
 (13) 

 

This transformation is referred to by several names 

 (i) Four-parameter transformation, the four parameters being , , , ,x ya b t t

 (ii) 2D Linear Conformal transformation, 

 (iii) Similarity transformation and 

 (iv) Helmert's transformation, after the German geodesist F.R. Helmert (1843-

1917). 

 

Note that "linear" is sometimes used in the description of a conformal transformation 

to differentiate it from a polynomial conformal transformation.  Polynomial conformal 

transformations are rarely used so the distinction will not be used hereafter. 
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The 2D (linear) conformal transformation equations may be derived by considering 

Figure 6.  The  coordinates are obtained by rotating and scaling the u,v 

coordinates; and then the x,y coordinates obtained by adding the translations  and 

 to the  coordinates.  This two-step process is given by the equations: 

,x y′ ′

xt

yt ,x y′ ′

 

cos sin

sin cos

x

y

x u
s vy

x x t
y ty

θ θ

θ θ

⎡ ⎤′ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−′⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤′ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ′⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 

u

vy

x

v

u
· P

y'

x'

v sin θ

u cos θ

v 
co

s 
θ

u sin θ

θ
t

t

y

x  
 

Figure 6.  Schematic diagram of rotated and translated axes 

 

Note that in Figure 6,  and  are both positive quantities, but in general, they 

may be positive or negative. 
xt yt
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As an example of a 2D Conformal transformation, consider the polygon ABCD whose 

u,v coordinates are rotated by a positive anticlockwise angle , scaled by a 

factor  and translated by  and   Figure 1 shows 

the initial location of the polygon in the u,v survey system and Figure 7 shows its 

transformed (rotated, scaled and translated) location in the x,y title system. 

30θ = D

0.6s = 50.000mxt = 150.000myt =

 

Point

176.962 249.904

280.885 309.904

310.884 257.942

176.962 180.622

x y

A

B

C

D

x

y

A

B

C

D

 
 

Figure 7 Rotated, scaled and translated polygon ABCD with x,y coordinates in metres 
 

Comparing Figures 1 and 7 it appears that the shape of the polygon ABCD has not 

changed but its area and orientation with respect to the coordinate axes has.  This 

can be verified by considering the dimensions (bearings and distances) and area of the 

polygon ABCD derived from the two coordinate sets. 
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 Polygon dimensions in the u,v system Polygon dimensions in the x,y system 
 

Inspection of the two sets of dimensions reveals that bearings and distances of the 

polygon in the u,v system have been has been rotated by an angle  and scaled 

by a factor .  

30θ = D

0.6s = Note that the shape of the polygon is unchanged but the area of 

the transformed figure has been reduced by a factor of .  Comparison with the 

previous transformation demonstrates that 

2s

translation has no effect on the area, 

shape and orientation of a polygon. 
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2D Conformal Transformation derived using conformal mapping theorems 

C.F. Gauss (1777-1855) showed that the necessary and sufficient condition for a 

conformal transformation from the ellipsoid to the map plane is given by the complex 

expression (Lauf 1983) 

 15 

 

)
)

  (14) (y i x f iχ ω+ = +

where the function  is analytic, containing isometric parameters  

(isometric latitude) and ω  (longitude) and in this equation the x-axis is east-west 

and the y-axis is north-south.  i is the imaginary number (

(f iχ ω+ χ

2 1i = − ).  It should be 

noted here that isometric means of equal measure, and on the surface of the ellipsoid 

(or sphere) latitude and longitude are not equal measures of length.  This is obvious 

if we consider a point near the pole where similar distances along a meridian and a 

parallel of latitude will correspond to vastly different angular values of latitude and 

longitude.  Hence in conformal map projections, isometric latitude is determined to 

ensure that angular changes correspond to linear changes. 

A necessary condition for an analytic function is that it must satisfy the Cauchy-

Riemann equations 

 andy x y
χ ω ω

∂ ∂ ∂ ∂= =−
∂ ∂ ∂ ∂

x
χ

)

 (15) 

Using this theorem, a conformal transformation from one plane rectangular 

coordinate system u,v (isometric parameters) to another plane rectangular system x,y 

(also isometric parameters) is given by the complex expression 

  (16) (y i x f v i u+ = +

A function ( )f v i u+  that satisfies the Cauchy-Riemann equations, is a complex 

polynomial, hence (16) can be given as 

 ( )( )
0

n k

k k
k

y i x a ib v i u
=

+ = + +∑  (17) 

Equation (17) can be expanded to the first power (k = 1) giving 

  
0 1

0 0 1 1

2
0 0 1 1 1 1

( )( ) ( )( )y ix a ib v iu a ib v iu

a b i a v a ui b vi b ui

+ = + + + + +

= + + + + +



Equating real and imaginary parts (remembering that ) gives 2 1i =−
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v

v
  (18) 

0 1 1

0 1 1

x b a u b

y a b u a

= + +

= − +

or in matrix notation with translations  and  between the coordinate axes 0a 0b

 
1 1 0

01 1

x a b u b
y v ab a

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ + ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
 (19) 

 

These equations are of similar form to equations (13) in the section headed 

"Conformal Transformations with Rotation, Scale and Translations" and properly 

describe a 2D Conformal transformation.  Note that the elements of the leading 

diagonal of the coefficient matrix (a rotation matrix multiplied by a scale factor) are 

identical and the off-diagonal elements the same magnitude but opposite sign. 
 

Equations (18) are essentially the same equations as in Jordan/Eggert/Kneissal (1963, 

pp. 70-73) in the section headed "Das Helmertsche Verfahren (Helmertsche 

Transformation)" (Helmert's Transformation) although as noted by Bervoets (1992) 

in his bibliography, there is no reference to the original source.  It is probable that 

F.R. Helmert developed this conformal transformation in his masterpiece on geodesy, 

Die mathematischen und physikalischen Theorem der höheren Geodäsie, (The 

mathematics and physical theorems of higher geodesy) on which he worked from 1877 

and published in two parts:  vol. 1, Die mathematischen Theorem (1880) and vol. 2, 

Die physikalischen Theorem (1884) [DSB 1972].  This probably accounts for the 

common usage of the term Helmert transformation when describing a 2D Conformal 

transformation. 

 

The partial derivatives of (18) are 

 1 1 1, , andx x y ya b b
u v u v

∂ ∂ ∂ ∂= = = − =
∂ ∂ ∂ ∂ 1a  

which satisfy the Cauchy-Riemann equations 

 andy x y
v u u

∂ ∂ ∂ ∂= = −
∂ ∂ ∂ ∂

x
v

 

so verifying that the transformation is conformal. 
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SOLVING FOR CONFORMAL TRANSFORMATION PARAMETERS 

Coordinate transformations, as used in practice, are models describing the assumed 

mathematical relationships between points in two rectangular coordinate systems; in 

these notes, the u,v (survey) and the x,y (title) systems.  To determine the 

parameters of any transformation, coordinates of points common to both systems 

must be known.  These points are known as control points or common points.  The 

number of common points required for the solution of transformation parameters 

depends on the number of parameters in the transformation.  In 2D transformations, 

each common point gives rise to two equations, thus n common points will give 2n 

equations.  Therefore, if the four parameters of a 2D Conformal transformation are to 

be determined, then a minimum of two common points are required to solve for the 

parameters. 

 

It is good measurement practice to determine coordinate transformation parameters 

by using more than the minimum number of common points.  This introduces 

redundant equations into the solution for the parameters and the theory of least 

squares is employed to calculate the best estimates.  Parameters calculated in this 

manner are usually more reliable and the least squares process allows precision 

estimation of the parameters as well as an assessment (via residuals) of how well the 

transformation model fits the common points.  By using least squares, several types 

of transformations can be "tested" on the common points to assess their suitability. 

 

The solution for the transformation parameters involves the following steps 

 

(i) Select the common points ensuring that there are sufficient to allow a redundant 

set of equations. 

(ii) Select the appropriate weight matrix W for the model. 

(iii) Solve for the parameters (contained in the vector x) and residuals (contained in 

the vector v). 

(iv) Assess the suitability of the model by analysis of the parameters and residuals. 

 



Mathematical model for solution of 2D Conformal Transformation Parameters 
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n

The 2D Conformal transformation, or the mathematical model, consisting of rotation, 

scaling and translation is set out above [see equation (13)] and the transformation for 

the  common points is given in the form of observation equations 

(20) 

1, 2, 3, ,k = …

 k

k

k x k x

k y k y

x v a b u t
y v v tb a

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
 (20) 

where  and  are small unknown corrections or residuals simply added to the 

equations to account for the assumed inconsistency in the model.  We could think of 

these residuals as consisting of two parts; one part associated with the u,v (survey) 

system and the other associated with the transformed x,y (title) system; the 

subscripts x and y attached to the residuals simply reflect the fact that they have 

been added to the "transformed" side of the model. 

kxv
ky

v

 

Re-arranging (20) so that all the "unknowns" are on to the left of the equals sign and 

the observations are to the right gives 

  (21) k

k

x k k x

y k k y

v a u b v t x

v a v b u t y

− − − = −

− + − = −
k

k

For n common points and  unknown parameters, the partitioned matrix 

representation of the 2n equations (21) is 

4u =

 

1

2

3

1

2

3

1 1

2 2

3 3

1 1

2 2

3 3

1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1

n

n

x

x

x
x

x n n

y

y

y

y
n n

u vv a
u vv b
u vv t

t
v u v
v v u
v v u
v v u

v
v u

⎡− − − ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ + ⎢ ⎥− −⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ − −⎢ ⎥⎣ ⎦

# # # ##

# # # # #

1

2

3

1

2

3

y

n

n

x
x
x

x
y
y
y

y

−⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥−⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

#

#

 (22) 



These equations are represented by the matrix equation 

 v Bx f+ =  (23) 

where 

 v is a (2n,1) column vector of residuals 

 B is a (2n,u) matrix of coefficients 

 x is a (u,1) vector of unknown parameters 

 f is a (2n,1) column vector of numeric terms (coordinates) 

 

The normal equations for the least squares solution of parameters x and residuals v 

are given in matrix form as 

  (24) ( )T =B WB x B WfT

or 

  (25) =Nx t

where 

  is the (u,u) symmetric coefficient matrix of the normal equations T=N B WB
  is the (u,1) vector of numeric terms of the normal equations T=t B Wf

 

1

2

1

2

0 0 0 0

0 0

0 0

0

0

0 0

n

n

w

w

w

w

w

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

W

" "

# %

#

%

"

0

0

#

 

 is the (2n,2n) diagonal weight matrix where the weights  on the upper-left 

diagonal are repeated on the lower-right diagonal.  Weights are usually integer 

values and high weights are associated with "strong" points and low weights 

associated with "weak" points. 

kw
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The general form of the normal equations  are =Nx t
 

( )

( )

( )

( )

2 2

11 1 1

2 2

11 1 1

11

1 1

0

0

symmetric

nn n n

k k k k kk k k k k k k
kk k k

nn n n

k k k k kk k k k k k k
kk k k

nn
x

k kk
y kk

n n

k k k
k k

w u x v yw u v w u w v

a
w v x u yw u v w v w u b

t
w xw t

w w y

== = =

== = =

==

= =

⎡⎡ ⎤ +⎢+⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ −⎢ ⎥+ − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣

∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑

∑ ∑

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 (26) 

Centroidal coordinates 

Computational savings can be made by reducing coordinates to a weighted centroid.  

For the n common points, the coordinates of the weighted centroid  in the x,y 

system are 

,c cx y

 

1 1 2 2 3 3 1

1 2 3

1

1 1 2 2 3 3 1

1 2 3

1

n

k k
n n k

nc
n

k
k

n

k k
n n k

nc
n

k
k

w x
w x w x w x w xx

w w w w w

w y
w y w y w y w yy

w w w w w

=

=

=

=

+ + + += =
+ + + +

+ + + += =
+ + + +

∑

∑

∑

∑

"
"

"
"

 (27) 

Note here that coordinates of the weighted centroid  are just the weighted 

arithmetic means of the coordinates of the n common points.  Also, note that if all 

points have the same weight then the coordinates of the centroid  are 

,c cx y

,c cx y

 1 1,

n n

k k
k k

c c

x y
x y

n n
= == =
∑ ∑

 

Now, the centroidal coordinates of the n common points in the x,y system are then 

 

1 1 1 1

2 2 2 2

3 3 3 3

c c

c c

c

n n c n n

x x x y y y
x x x y y y
x x x y y y

x x x y y y

= − = −
= − = −
= − = −

= − = −
# #

c

c

 (28) 
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Similar relationships can be written for centroidal coordinates in the u,v system.  A 

useful property of the centroidal coordinates of the n common points is that their 

sums equal zero, i.e., 

 
1 1 1 1

0, 0, 0, 0
n n n n

k k k k k k k k
k k k k

w x w y w u w v
= = = =

= = =∑ ∑ ∑ ∑ =  (29) 

Thus, replacing x,y and u,v coordinates with their centroidal counterparts ,x y  and 

,u v  reduces the observation equations (20) to a centroidal form 

 k

k

xk

yk k

v a bx u
vy b a

k

v
⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥+ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (30) 

It should be noted here that translations  and  are both zero when centroidal 

coordinates are used indicating that the centroids  and  are the same point. 
xt yt

,c cx y ,c cu v

 

For n common points and  unknown parameters, the partitioned matrix 

representation of the 2n observation equations resulting from the centroidal model 

(30) is 

2u =

 

1

2

3

1

2

3

11 1

22 2

33 3

11 1

22 2

33 3

n

n

x

x

x

x nn n

y

y

y

y nn n

v xu v
v xu v a
v xu v b

v xu v
v yv u
v yv u
v yv u

v yv u

−− −⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −− −⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ −− − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −− −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ + −−⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −−⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −−⎢ ⎥⎢ ⎥⎣ ⎦

=

⎣ ⎦

# ## #

# ## #

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (31) 

These equations are represented by the matrix equation (23) and the normal 

equations have the following simple form containing only three different numbers

 
( )

( )

( )

( )

2 2

1

2 2

1 1

0

0

n n

k k k k k k k k
k k

n n

k k k k k k k k
k k

w u v w u x v ya

b
w u v w v x u y

=

= =

⎡ ⎤ ⎡+ +⎢ ⎥ ⎢⎡ ⎤⎢ ⎥ ⎢⎢ ⎥ =⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎣ ⎦+ −⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

∑ ∑

∑ ∑
1=

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

 (32) 
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The solutions for the parameters a and b are 

 
( )

( )
1

2 2

1

n

k k k k k
k

n

k k k
k

w u x v y
a

w u v
=

=

+
=

+

∑

∑
 (33) 

 
( )

( )
1

2 2

1

n

k k k k k
k

n

k k k
k

w v x u y
b

w u v
=

=

−
=

+

∑

∑
 (34) 

The translations  and  are obtained by re-arranging (13) and replacing x,y and 

u,v with the coordinates of the centroid  and  giving 
xt yt

,c cx y ,c cu v

 
c cx

c cy

x a bt
yt b a

u
v

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ − ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
 (35) 

or  (36) 
x c c

y c c

t x au bv

t y bu av

= − −

= + −
c

c

After calculation of the parameters, 
T

x ya b t t⎡ ⎤= ⎢ ⎥⎣ ⎦x  the residuals are calculated 

using (31). 

 

The least squares solution for the transformation parameters looks formidable, but it 

really is very simple.  The parameters for any 2D Conformal transformation can be 

computed using a pocket calculator and this solution depends on forming only three 

numbers from a system of centroidal coordinates.  Alternatively, a simple computer 

program spreadsheet (such as Excel) could be used. 

 

In the following pages an example of a 2D Conformal transformation as an aid to 

cadastral re-establishment will be discussed. 
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CONFORMAL TRANSFORMATION EXAMPLE 

Figure 8 shows a Plan of Subdivision (LP48556) with distances in links (1 chain = 

100 links = 66 feet) and bearings related to True North.  The plan shows two 

Reference Marks (RM's), one near the south-west corner of Lot 1 and the other near 

the south-east corner of the 100 link wide access to Lot 2.  The subdivision was 

created and marked on the ground in the 1920's. 
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Figure 8  Plan of Subdivision LP48556 

 

Figure 9 shows an Abstract of Fieldnotes of a recent survey conducted for the 

purposes of boundary re-establishment prior to purchase of Lot 2, LP 48556.  At the 

time of survey only one of the RM's along the road was found and old pegs, thought 

to be original, were found at the south-west and north-east corners of Lot 2.  Most of 

the fencing was fairly recent, probably replacing original fencing.  The post at the 

north-east corner of Lot 2, which is new, is very close to the old peg which may have 

been disturbed when the new post was put in.  The other old peg at the south-west 

corner of Lot 2 appeared to be original and undisturbed. 
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Figure 9  Abstract of Fieldnotes of survey of Lot 2, LP48556 

 

The datum of the survey was the post A (south-west corner of Lot 1) and the RM B 

found near the south-east corner of the road access to Lot 2.  A traverse line offset 

2.010 m (10 links) from the post at A and passing through the RM was adopted for 

the bearing datum of 300° 00′ 

 

For this example we will perform a cadastral re-establishment using a 2D Conformal 

transformation (scale, rotation and translations) with weights based on the RM and 

the two old pegs of LP48556.  In light of the information above, the RM will be given 

a weight of 10, the old peg at the south-west corner of Lot 2 will be given a weight of 

5 and the other old peg (north-east corner of Lot 2) will be given a weight of 1. 
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The parameters of the transformation (scale, rotation and translations) will be 

determined and an inspection of residuals will give some indication as to the 

"correctness" of the re-establishment. 

 

For the purposes of computing the transformation parameters, two arbitrary 

coordinate systems will be used.  One system of coordinates, in metres, called TITLE 

will have values of 5000.000 E and 5000.000 N for the RM near the south-east corner 

of the road access to Lot 2.  For the purpose of computing the TITLE coordinates 

the original dimensions in links will be converted to metres where 1 chain = 100 links 

= 66 feet, and 1 foot = 0.3048 metres (exactly) giving links × 0.201168 = metres.  

The original dimensions of 1000 links, 3000 links and 1578 links will be converted to 

metres (3 decimal places) and the other dimensions "computed to close" and noted to 

4 decimal places.  The road access frontage will be derived by computation after 

converting the 100 link width to 20.117 metres.  This computation process should 

ensure that coordinates are mathematically correct to 3 decimal places. 

 

The other system of coordinates, also in metres, and called SURVEY will have values 

of 2000.000 E and 2000.000 N for the RM found.  The traverse dimensions are 

mathematically correct (to a millimetre) and should yield SURVEY coordinates of 

traverse points and occupation correct to 3 decimal places. 
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Figure 10  TITLE coordinates (metres) 

 
   TITLE CENTROIDAL TITLE 

POINT Description Weight E N E N 
1 RM 10 5000.000 5000.000  112.088 -141.057 
5 Old Peg 5 4641.116 5330.333 -246.796  189.276 
7a Old Peg 1 5001.006 5605.246  113.094  464.189 
       

centroid   4887.9116 5141.0569   

 

Coordinates of the centroid computed using equation (27) and centroidal coordinates 

calculated using equation (28). 
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Figure 11  SURVEY coordinates (metres) 

 
   SURVEY CENTROIDAL SURVEY 

POINT Description Weight U V U  V  
1 RM 10 2000.000 2000.000  112.150 -140.996 
5 Old Peg 5 1640.966 2330.131 -246.884  189.135 
7a Old Peg 1 2000.774 2605.283  112.924  464.287 
       

centroid   1887.8503 2140.9961   

 

Coordinates of the centroid computed using equation (27) and centroidal coordinates 

calculated using equation (28). 

 27 

 



Using the centroidal TITLE ( ),E N and centroidal SURVEY ( ),U V  coordinates we 

can form the weighted centroidal coordinate products ( )2 2

1

n

k k k
k

w U V
=

+∑ , 

( )
1

n

k k k k k
k

w U E V N
=

+∑  and ( )
1

n

k k k k k
k

w V E U N
=

−∑  that are used in equations (33) and 

(34) to compute the parameters a and b.  These products are 

 

POINT ( )2 2

1

n

k k k
k

w U V
=

+∑ ( )
1

n

k k k k k
k

w U E V N
=

+∑ ( )
1

n

k k k k k
k

w V E U N
=

−∑  

1  324574.7369  324591.6483 154.7374 
5  483619.1692  483643.2860 258.0952 
7a  228314.0756  228287.9302 90.2643 
    

sums 1036507.9817 1036522.8644 503.0970 

 

The transformation parameters a and b are 

 
( )

( )
1

2 2

1

1036522.8644 1.000014359
1036507.9817

n

k k k k k
k

n

k k k
k

w U E V N
a

w U V
=

=

+
= = =

+

∑

∑
 

 
( )

( )
1

2 2

1

503.0970 0.000485377
1036507.9817

n

k k k k k
k

n

k k k
k

w V E U N
b

w U V
=

=

−
= = =

+

∑

∑
 

The translations  and  are obtained from equations (36) as Et Nt

  
2998.995

3000.946
E c c c

N c c c

t E aU bV

t N bU aV

= − − =

= + − =

where the coordinates of the centroid in both systems are given in the tables below 

Figures 9 and 10. 

 

Having obtained a, b,  and , residuals at the common points can be obtained 

from either equation (20) or (30). 
Et Nt

 

These results, together with the transformed coordinates are shown on the Excel 

worksheet on the following page. 
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CONFORMAL TRANSFORMATION WITH SCALE FACTOR OF UNITY 

For certain purposes it may be desirable to determine the transformation parameters 

from common points with the condition that the scale factor be equal to unity, i.e., 

.  This can be achieved by the following: 1s =

 

Let's say that we are able to obtain a and b from equations (33) and (34) – a least 

squares solution with weights.  The scale s and rotation angle θ  are obtained from 

equations (10) which are re-stated here again as 

 2s a b= + 2  (37) 

 1tan b
a

θ − ⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠  (38) 

If we divide both sides of equation (37) by s we have 

 

2 2

2 2

2

22

1s a b
s s

a b
s

a b
s s

+= =

+=

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜= + ⎟⎟ ⎜⎜ ⎟ ⎟⎜⎝ ⎠ ⎝ ⎠

 

If we define 

    and   aa
s s

′ = bb′ =  (39) 

the transformation, given by equation (13), becomes 

 
x

y

x a b u t
y vb a t

⎡ ⎤ ⎡′ ′ ′⎡ ⎤ ⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥= ⎥+⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥′ ′ ′− ⎥
⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦

 (40) 

and this transformation has a scale factor of unity, since 

 ( ) ( )2 2
1a b′ ′+ =  

Also, we note that b b
a a

′
=

′
 since the scale s will cancel in the division so that the 

rotation angle θ  computed from equation (38) is the same whether we use the 

parameters a,b or new parameters  from equation (39). ,a b′ ′
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yt ′

c

v
′

It should be noted that the "new" transformation, with scale factor of unity, given by 

equation (40), has translations  and these will be different from the translations 

 of equation (13).  The translations  are obtained by re-arranging 

equation (40) and replacing x,y and u,v with the coordinates of the centroid  and 

 giving 

,x yt t′ ′

,x yt t  and xt ′

,c cx y

,c cu v

 
x c

c cy

t x a b u
yt b a

⎡ ⎤ ⎡ ⎤′ ′⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥ ⎤
⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥′ ′−⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦ ⎦

c

c

′

′

 (41) 

or  (42) 
x c c

y c c

t x a u b v

t y b u a v

′ ′= − −

′ ′= + −

After calculation of the parameters, 
T

x ya b t t⎡ ⎤′ ′ ′ ′= ⎢ ⎥⎣ ⎦x  the residuals are calculated 

using (31). 

 

We define , , ,x yt′ ′ ′ ′a b t  as the parameters of a conformal transformation with a scale 

factor of unity. 

 

Using the computed data from the example:  

14476  and from equations

1.000014359, 0.000485377a b= =

giving s =  (39) 1.0000

 

1.000014359 0.999999882
1.000014476
0.000485377 0.000485370
1.000014476

aa
s
bb
s

′ = = =

′ = = =
 

The translations  and  are obtained from equations (42) as Et ′ Nt ′

  
2999.022

3000.977
E c c c

N c c c

t E a U b V

t N b U a V

′ ′ ′= − − =

′ ′ ′= + − =

where the coordinates of the centroid in both systems are given in the tables below 

Figures 9 and 10. 

 

Having obtained a', b',  and , residuals at the common points can be obtained 

from either equation (20) or (30) by replacing a, b,  and  with a', b',  and . 
Et ′ Nt ′

xt yt Et ′ Nt ′

 

These results, together with the transformed coordinates (where the scale factor is 

unity) are shown on the Excel worksheet on the following page. 
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WEIGHTING SCHEMES 

 When solving for the transformation parameters, observation equations are 

formed – there are 2n equations, where n is the number of common points or control 

points – and the least squares principle leads to a set of normal equations [see 

equations (24) and (25)] that involve a (diagonal) weight matrix W where the 

elements of the leading diagonal  etc. are known as 1 2 3, , ,w w w … weights and are 

usually integers (see page 19).  High weights (large integers) are associated with 

"strong" points and low weights (small integers) associated with "weak" points. 

 This association may be best explained by reference to the example (see Figures 

8 and 9) remembering that weights are only assigned to control points. 

 The three control points are the Reference Mark (RM found) near the S.E. 

corner of Lot 1, the old peg (OP) by the post at the N.E. corner of Lot 2 and the OP 

at the S.W. corner of Lot 2.  Most surveyors would probably regard RM's and pegs 

(if they have not been disturbed) as very strong indicators of title corners (via title-

connections in the case of RM's).  Pegs might be slightly less well regarded as they 

could have been disturbed, and fence posts or fence intersections, would rank below 

that of pegs and RM's as important indicators of title corners.  This would be a fairly 

normal hierarchy that a surveyor would gain from experience.  Assigning weights is 

merely putting numbers into the transformation process that reflect that hierarchy.  

 In the exercise, the RM has been assigned a weight of 10, the OP at the S.W. 

corner of Lot 2 has been assigned a weight of 5 and the other OP at the N.E. corner 

of Lot 2 has been assigned a weight of 1.  Perhaps here, the intention is to give less 

weight to the OP by the fence post, since there is a possibility that the peg could 

have been disturbed – by the fencing contractor perhaps.  These are arbitrary 

numbers and are reflections of the surveyor's field experience.  Control points of high 

weight will have smaller residuals than control points of low weight.  You can adjust 

the magnitude of the weights to give a particular point (or points) lower residuals 

than other points. 

 It is interesting to note that in the Excel spreadsheet used to compute the 

transformation parameters, assigning a weight of zero effectively removes that point 

as a control point.  This means that initially, all the occupation (RM's, OP's, posts, 

etc.) can be control points in an initial transformation and then removed from the 

process by assigning a weight of zero to points that have large residuals; indicating 
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that the occupation is not at, or near, a title corner.  This adds flexibility to the re-

establishment analysis. 
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